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A B S T R A C T

When there are significant service disruptions in public transit systems, passengers usually need
guidance to find alternative paths. This paper proposes a path recommendation model to miti-
gate congestion during public transit disruptions. Passengers with different origins, destinations,
and departure times are recommended with different paths such that the system travel time is
minimized. We model the path recommendation problem as an optimal flow problem with
uncertain demand information. To tackle the lack of analytical formulation of travel times due
to capacity constraints, we propose a simulation-based first-order approximation to transform
the original problem into a linear program. Uncertainties in demand are modeled using robust
optimization to protect the path recommendation strategies against inaccurate estimates. A real-
world rail disruption scenario in the Chicago Transit Authority (CTA) system is used as a case
study. Results show that even without considering uncertainty, the nominal model can reduce
the system travel time by 9.1% (compared to the status quo), and outperforms the benchmark
capacity-based path recommendation. The average travel time of passengers in the incident
line (i.e., passengers receiving recommendations) is reduced more (−20.6% compared to the
status quo). After incorporating the demand uncertainty, the robust model can further reduce
system travel times. The best robust model can decrease the average travel time of incident-line
passengers by 2.91% compared to the nominal model. The improvement of robust models is
more prominent when the actual demand pattern is close to the worst-case demand.

. Introduction

.1. Background

Public transit (PT) systems play an important role in urban mobility. However, with aging systems, continuous expansion, and
ear-capacity operations, service disruptions often occur. These incidents may result in delays, cancellation of trips, and economic
osses (Cox et al., 2011).

This study considers significant service disruptions in public transit systems where the service (or line/route) is interrupted for
relatively long period of time (e.g., 1 h). During a disruption, affected passengers need to find an alternative path or use other
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travel modes (such as transfer to another bus route). However, due to a lack of knowledge of the system state (especially during
incident time), the alternative routes chosen by passengers may not be optimal or even cause more congestion (Mo et al., 2022b).
For example, during a rail disruption, most of the passengers may choose bus routes that are parallel to the interrupted rail line
as an alternative. However, given the limited capacity of buses, the parallel bus line may be over-saturated and passengers have to
wait for a long time to board due to being denied boarding (or left behind).

1.2. Objectives and challenges

One of the strategies to better guide passengers is to provide path recommendations so that the passenger flows are re-distributed
n a better way and the system travel times are reduced. This can be seen as solving an optimal passenger flow distribution (or
assignment) problem over a public transit network. However, there are several challenges to this problem.

• First, as the objective is to reduce the system travel time, an analytical formulation to calculate passengers’ travel times is
needed. However, a passenger’s waiting times at the boarding and transfer stations are not only determined by other waiting
passengers but also those who already boarded the same line as they reduce the vehicle’s capacity (De Cea and Fernández,
1993). This complicated interaction makes it difficult to have an analytical formulation for passengers’ travel time when the
left behind is not negligible (which is usually the case during service disruptions). More details on this challenge are elaborated
in Section 2.4.

• Second, there are many uncertainties in the system, such as the number of passengers using the PT system during incidents
(i.e., demand uncertainty), incident duration, and whether passengers would follow the recommendations or not (i.e., behavior
uncertainty). Previous studies have not considered uncertainties in modeling an optimal passenger flow problem.

This study aims to propose a path recommendation model to reduce crowding during public transit disruptions, also taking
nto account uncertainties due to inaccurate demand estimates. Different from previous recommendation systems that focus on
aximizing individual preferences, this study targets a system objective by minimizing the total travel time of all passengers

including those who are not in the incident line/area). To address the aforementioned first challenge, we propose a simulation-
ased linearization to convert the total system travel time to a linear function of path flows using a first-order approximation, which
eads to a tractable optimization problem. For the second challenge, this study focuses on the demand uncertainty (i.e., how many
assengers will use the PT system during a service disruption) and models it within the robust optimization (RO) framework. The
roposed approach is applied in a case study using data from the Chicago Transit Authority (CTA) system during a real-world urban
ail disruption.

The main contributions of this paper are as follows:

• To tackle the non-analytical system travel time calculation, we propose a simulation-based linearization to convert the total
system travel time to a linear function of path flows using first-order approximation. Importantly, we utilize the physical
interaction between passengers and vehicles in a public transit system to efficiently calculate the gradient (i.e., marginal
change of travel time) without running the simulation multiple times (as opposed to traditional black-box optimization).

• We use RO to model the demand uncertainty which protects the model against inaccurate demand estimation. Specifically, we
derive the closed-form robust counterpart with respect to the intersection of one ellipsoidal and three polyhedral uncertainty
sets. These uncertainties capture the demand variations and the potential demand reduction during an incident. We also
provide a feasible way of combining historical and survey data to quantify the uncertainty parameters.

The remainder of this paper is organized as follows. The literature review is presented in Section 2. In Section 3, we describe
he problem and discuss the solution methods. Section 4 discusses model extensions and generalizability. We apply the proposed
ramework to the CTA system as a case study in Section 5. The model results are analyzed in Section 6. Finally, we conclude the
aper and summarize the main findings in Section 7.

. Literature review

.1. Supply-side incident management

During a disruption, transit operators usually need to adjust services such as re-schedule timetables, re-route services, or design
huttle buses. Jespersen-Groth et al. (2009) mention that the disruption management process often involves solving three interrelated
roblems sequentially: timetable adjustment, rolling stock rescheduling, and crew rescheduling. These are supply-side incident
anagement strategies that are different from path recommendations (demand side). Supply-side strategies are widely explored in

he literature. For example, timetable rescheduling has been explored from both train-oriented (D’Ariano et al., 2008; D’Ariano and
ranzo, 2009; Corman et al., 2010, 2012, 2014; Louwerse and Huisman, 2014; Zhan et al., 2015) and passenger-oriented (Schöbel,
007; Schachtebeck and Schöbel, 2010; Dollevoet et al., 2012; Kroon et al., 2015; Gao et al., 2016) aspects, where the former pays
ore attention to the details of the rail system and the handling of disruptions or disturbances, focusing on minimizing the delays of

rains or the number of canceled trains. The latter aims at minimizing passengers’ total delay after a disruption or disturbance. For
huttle bus designs, Kepaptsoglou and Karlaftis (2009) propose a methodological framework for planning and designing an efficient
us bridging network. Jin et al. (2016) use a column generation procedure to dynamically generate demand-responsive candidate
us routes for shuttle bus design. A more comprehensive review of supply-side recovery models and algorithms for real-time railway
isturbance and disruption management can be found in Cacchiani et al. (2014).
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2.2. Path recommendations during incidents

Most previous studies on path recommendations under incidents were conducted at a single OD level. That is, the main objective
s to find available routes or the shortest path given an OD pair when the network is interrupted by incidents. For example, Bruglieri
t al. (2015) designed a trip planner to find the fastest path in the public transit network during service disruptions based on real-time
obility information. Böhmová et al. (2013) developed a routing algorithm in urban public transportation to find reliable journeys

hat are robust against system delays. Roelofsen et al. (2018) provided a framework for generating and assessing alternative routes
n case of disruptions in urban public transport systems. To the best of the authors’ knowledge, none of the previous studies have
onsidered path recommendations at the system level, that is, providing path recommendations for passengers of different OD pairs
nd with different departure times so that the system travel time is reduced.

.3. Passenger evacuation under emergencies

Providing path recommendations during disruptions is related to the topic of passenger evacuation under emergencies. The
bjective of evacuation is usually to minimize the total evacuation time. In general, these papers can be categorized into micro-level
nd macro-level based on how passenger flows are modeled and the spatial scope of the study area.

The micro-level studies usually use an agent-based simulation model to evaluate different evacuation strategies within some
nfrastructure. For example, Wang et al. (2013) simulated passenger evacuation under a fire emergency in Metro stations. Chen et al.
2017) developed four modeling approaches including a queuing model and an agent-based simulation to calculate the evacuation
ime under different emergency situations and evacuation plans. Hassannayebi et al. (2020) used an agent-based and discrete-event
imulation model to assess the service level performance and crowdedness in a metro station under various disruption scenarios
e.g., train failure in the tunnel and fire at the station gallery). Zhou et al. (2019) proposed a hybrid bi-level model to optimize the
umber and initial locations of leaders who guide passengers’ evacuation in urban rail transit stations during an evacuation.

The macro-level studies consider a larger study area (e.g., city-level) and aim to evacuate passengers from the incident area
hrough various transportation modes. For example, Abdelgawad and Abdulhai (2012) developed an evacuation model to determine
he routing and scheduling of subway and bus transit services used to alleviate congestion pressure during the evacuation of busy
rban areas. Wang et al. (2019a) proposed an optimal bus bridging design method under operational disruptions on a single metro
ine. Tan et al. (2020) proposes an evacuation model with urban bus networks as alternatives in the case of common metro service
isruptions by jointly designing the bus lines and frequencies.

The macro-level passenger evacuation is similar to the setup of this study, but with the following major differences. First, in
ur paper, the service disruption is not as severe as an emergency situation. The service will recover after a period of time and
assengers are allowed to wait at a station. They do not necessarily need to cancel trips or follow evacuation plans as required in
vacuation studies. Second, in this study, we assume that the service adjustment is known. The focus is on providing information
o passengers to better utilize the existing resources/capacities of the system (demand side). However, the evacuation studies, since
sually assuming the whole system breaks down, mainly focus on designing new services, such as routing and re-scheduling (supply
ide).

.4. Travel time calculation in public transit networks

Passengers’ travel time has two components: in-vehicle time and waiting time. In-vehicle time is not affected by passenger flows
nce passengers are onboard, thus is easy to model (e.g., modeled as a constant). However, the waiting time is more complicated
o calculate if the system is congested with left behind due to capacity constraints.

Passengers’ travel time is usually modeled in the context of transit assignment, using two major approaches: frequency-based
static) and schedule-based (dynamic). In the frequency-based transit assignment approach, the waiting time is either assumed to
e inversely proportional to the (effective) service frequency (Wu et al., 1994; Schmöcker et al., 2011; Nielsen, 2000), or modeled
s a congestion function (e.g., BRP) of previously boarded flows and new arrival flows with exogenously-calibrated parameters (De
ea and Fernández, 1993). The former method does not consider the left behind, and the latter only outputs a generalized waiting
ost (rather than the waiting time as the vehicle capacity is not explicitly modeled) and requires a dedicated calibration process.
herefore, the frequency-based transit assignment model is not suitable for this study because congestion and left behind are not
egligible during disruptions.

In terms of the schedule-based models (Nguyen et al., 2001; Hamdouch and Lawphongpanich, 2008; Hamdouch et al., 2014;
chmöcker et al., 2008), the waiting time can only be obtained after a dynamic network loading (or simulation) process. For
xample, Schmöcker et al. (2008) used the fail-to-board probability to model the left behind. This probability is updated after
ach network loading and can be used to calculate the waiting time. However, in this way, the waiting time is still constant within
ach iteration. There is no direct way to formulate waiting time as a function of path flows.

Since formulating travel time as a function of path flows remains a challenge, the optimal passenger flow distribution in transit
etworks has no closed-form formulation. This study proposes a simulation-based first-order approximation to solve the original
roblem iteratively. With the proposed tractable linear programming model, uncertainties can also be incorporated.
84



Transportation Research Part B 169 (2023) 82–107B. Mo et al.

o
c

2.5. Passenger queuing in over-saturated scenarios

Since the difficulty of travel time calculation arises from the waiting time due to being left behind, we also review previous studies
n modeling passenger queuing in over-saturated scenarios. Passenger left behind is usually modeled by the following nonlinear
onstraint:

Num boarding passengers = min{Num waiting passengers,Remaining capacity} (1)

This constraint is resolved by the following methods in the literature: (1) transferring to a linear constraint with binary decision
variables then solved by heuristics or other algorithms (Gao et al., 2016; Shi and Li, 2021), (2) meta-heuristics (e.g., genetic algorithm
(GA), sequential quadratic programming) (Yang et al., 2012; Wang et al., 2015b), (3) iterative convex programming (Wang et al.,
2015a), (4) approximate dynamic programming (Yin et al., 2016; Shi and Li, 2021), (5) effective passenger loading time period
(with binary decision variables) (Niu and Zhou, 2013). Among these methods, modeling with binary decision variables requires
solving large-scale integer programming (the number of decision variables equal to the number of time intervals times the number
of platforms). This is usually solved by some heuristics and may not be applicable in a large-scale network. Another category of
meta-heuristics methods (like GA) is not efficient and does not well utilize domain-specific knowledge. Specifically, iterative convex
programming is slightly similar to our method. In each iteration, the approach fixes the number of waiting passengers and onboard
passengers based on the timetable from the last iteration and a simulation model. In our study, we also have a fixed ‘‘flow pattern’’
from the last iteration, but we also capture the ‘‘marginal change’’ in flows using a first-order approximation (see Section 3.3 for
details).

2.6. Simulation-based optimization

Simulation-based optimization methods are designed to solve optimization problems where the objective function and its
derivatives are difficult and expensive to evaluate. These methods have been widely used to solve the problems of congestion
pricing (Chen et al., 2016; He et al., 2017), traffic signal control (Osorio and Bierlaire, 2013; Osorio and Nanduri, 2015b,a; Chong and
Osorio, 2018), transit scheduling (Zhang et al., 2017), route choice estimation (Mo et al., 2021, 2022a), ride-sharing (Cardin et al.,
2017), supply chain management (Noordhoek et al., 2018), liner shipping (Dong and Song, 2009) and more. In general, there are
three classes of methods for the SBO, including the direct search method, the gradient-based method, and the response surface (meta-
model) method (Osorio and Bierlaire, 2013). In this paper, the proposed simulation-based first-order approximation is similar to a
combination of the gradient-based and response surface (meta-model) methods. Specifically, we use the first-order approximation as
a meta-model for the original objective function. In terms of the gradient calculation, instead of calling the simulation multiple times
for the gradient evaluation (e.g., simultaneous perturbation stochastic approximation (Spall, 1997)), we propose an efficient way
to calculate the gradient based on its physical meaning. This greatly saves computational time compared to typical gradient-based
methods.

2.7. Robust optimization (RO)

RO is a common approach to handling data uncertainty in optimization problems. RO generally needs to first specify a scope
of some uncertain parameters. The scope is referred to as the ‘‘uncertainty set’’. The optimization problem is conducted over the
worst-case realizations within the specified uncertainty set. This method is suitable for applications where there are uncertainties
related to the model input parameters and when uncertainties can lead to significant penalties or infeasibility in practice. Since the
solutions are optimal under the worst-case scenario, we treat the outputs of RO as a robust solution.

The solution method for RO problems involves generating a deterministic equivalent formulation, called the robust counterpart.
Computational tractability of the robust counterpart has been a major practical difficulty (Ben-Tal et al., 2009). A variety of
uncertainty sets have been identified for which the robust counterpart is reasonably tractable (Bertsimas et al., 2011).

The studies on RO have grown substantially over the past decades. Seminal papers include (Ben-Tal and Nemirovski, 1998, 1999;
Bertsimas and Sim, 2004). Comprehensive surveys on the early literature can be found in Ben-Tal et al. (2009) and Bertsimas et al.
(2011). The development of the RO methodology has allowed researchers to tackle problems with data uncertainty in a range of
fields. Examples include renewable energy network design (Xiong et al., 2016), supply chain operations (Ma et al., 2018), health
care logistics (Wang et al., 2019b), and ride-hailing (Guo et al., 2021).

However, to the best of the authors’ knowledge, no existing papers have incorporated RO techniques into path recommendations
during service disruptions. This research gap is important to address given the potentially inaccurate estimates of demand in public
transit networks during an incident.

3. Methodology

3.1. Event-based public transit simulator

Before introducing the path recommendation, we first describe an event-based public transit simulator that is used across this
study (Mo et al., 2020), especially for simulation-based linearization.
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Fig. 1. Structure of the network loading model.
Source: Adapted from Mo et al. (2020).

3.1.1. Simulator design
Fig. 1 summarizes the main structure of the simulator. The inputs for the simulator are time-dependent OD demand (or smart

card data), path shares, network structure, and train movement data (or timetable). Three objects are defined: trains, queues, and
passengers. Trains are characterized by routes, train ID, current locations, and capacities. Passengers are queued based on their
arrival times. Three different types of passengers are represented: left-behind passengers who were denied boarding from previous
trains, new tap-in passengers from outside the system, and new transfer passengers from other lines. The left-behind passengers are
usually at the head of the queue.

An event-based modeling framework is used to load the passengers onto the network. Two types of events are considered: train
arrivals and train departures. The events are sorted by time and processed sequentially until all events are successfully completed
during the analysis period. Train event lists (arrivals and departures) are generated according to the actual train movement data or
timetable. Each event contains a train ID, occurrence time, and location (platform). Passengers are assigned to a path based on the
corresponding input path shares. Note that in this study, a ‘‘path’’ is defined with specific boarding and transfer stations and lines.
We assume passengers following a path will only board vehicles belonging to the specific line, even though there are multiple lines
that serve a trip segment. Hence, there is no ‘‘common line’’ problem (De Cea and Fernández, 1993) in this study because ‘‘common
lines’’ will be treated as different paths.

For an arrival event, the train offloads passengers who reach their destination or need to transfer at the station and updates its
state (e.g. train load and in-vehicle passengers). For passengers who reach their destinations, their tap-out times are calculated by
adding their egress time. For those who transfer at the station, their arrival times at the next platform are calculated based on the
transfer time. The transfer passengers are added to the waiting queue in order of their arrival times at the next platform.

For departure events, the queue on the platform is updated by the new tap-in passengers, that is, passengers who arrive at the
platform after the last train departed are added to the queue based on their arrival times. Passengers board the train according to a
First-Come-First-Serve (FCFS) discipline until the train reaches its capacity. Passengers who cannot board are left behind and wait
in the queue for the next train. The states of the train and the waiting queue are updated accordingly.

The simulator can record every passenger’s trajectory during the whole travel process, including tap-in time, platform arrival
time, boarding time, alighting time, tap-out time, etc.

3.1.2. Simulating service disruptions
Given a service disruption, the event list is modified to incorporate the incident’s impact on the supply side. Specifically, all

incidents’ impacts can be reflected by changes in vehicles’ arrival and departure times. For example, the blockage of a rail line can
be represented by some vehicles in the line having long dwell times at the corresponding stations during the incident period. The
dispatching of shuttle buses can be seen as adding a new set of events (vehicle arrivals and departures) associated with the new
bridging route. The headway adjustment of existing routes can also be captured by the new vehicle arrival and departure times. In
this way, the event-based simulator can conveniently model service disruptions without changing the framework. It is worth noting
that using the change of timetable to capture the incident impact on supply is also applicable to multi-platform scenarios (i.e., a
platform serving different lines or different types of train capacities). Different from typical re-scheduling problems where the design
of the new timetable needs to consider the train conflicts in the multi-platform scenario, in this study, the timetable is given, where
the possible conflicts are already considered in the new timetable. In addition, the timetable change can also capture the ‘‘partially
blocked’’ platform. Details are illustrated in Appendix A.
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From the passenger side, when an incident happens, all passengers in blocked trains are offloaded to the nearest platform.
epending on the input path choices (i.e., recommendation strategies), offloading passengers are re-assigned to a new alternative
ath and join the queues at the corresponding boarding station. After reassigning the offloading passengers, the simulator continues
o run from the incident time to the end of the simulation period (note that passengers who have not entered the system when the
ncident occurs will have a new path choice depending on the input path choices).

.2. Problem description

Consider a service disruption in an urban rail system starting at time 𝑇𝑠 and ending at 𝑇𝑒. During the disruption, some stations
n the incident line (or the whole line) are blocked. Passengers in the blocked trains are usually offloaded to the nearest platforms.
o respond to the incident, some changes in the operations are made, such as dispatching shuttle buses, rerouting existing services,
hort-turning in the incident line, headway adjustment, etc. Assume that we have all information about the operating changes.1
hese changes define a new PT service network and alternative path sets. Our objective is to design an origin–destination (OD)
ased recommendation system. That is, when the incident happens, passengers can use their phones, websites, or electrical boards
t stations to access the recommendation system. They input their origin station, destination station, and departure time to
et a recommended path. The recommendation aims to minimize the system travel time, that is, the sum of all passengers’ travel
imes, including passengers at nearby lines or bus routes without incidents (note that these passengers may experience additional
rowding due to transfer passengers from the incident line).

Let  be the predetermined set of all OD pairs that may need path recommendations.  is defined based on whether an OD
air is affected by the incident or not. Operators usually need a period called ‘‘response time’’ (e.g., 10 to 20 min) to generate
he service changes. Let the response time be 𝜂. We assume that the path recommendations start at 𝑇𝑠 + 𝜂. Note that the origins
or passengers who are already in the system at time 𝑇𝑠 + 𝜂 (e.g., offloaded passengers from the blocked vehicles) is their current
ocations (as opposed to their initial origins such as the boarding stations). We aim to provide recommendations for passengers
hose OD pairs are in  and departure times are in the range from 𝑇𝑠 + 𝜂 to some time point after 𝑇𝑒, since the congestion may last

onger than 𝑇𝑒 and passengers departing after 𝑇𝑒 may also need guidance. Suppose that the period of recommendation starts at a
ime point (ℎ0) and consists of time intervals (ℎ1,… , ℎ𝐻 ) of equal length 𝜏 (e.g., 10 min). Specifically, ℎ0 represents the time point at
𝑠+𝜂. Recommendations at 𝑇𝑠+𝜂 focus on passengers who are offloaded from blocked vehicles or arrive between 𝑇𝑠 and 𝑇𝑠+𝜂 (their

departure times are 𝑇𝑠+𝜂).2 And ℎ𝑡 (𝑡 ≥ 1) represents the time interval (𝑇𝑠+𝜂+(𝑡−1)𝜏, 𝑇𝑠+𝜂+𝑡𝜏]. Recommendations at ℎ𝑡 (𝑡 ≥ 1) focus
n passengers who were not in the system when the incident happened and their departure times are in (𝑇𝑠 + 𝜂 + (𝑡 − 1)𝜏, 𝑇𝑠 + 𝜂 + 𝑡𝜏]
or passengers who are in the system when the incident happens but scheduled to depart in (𝑇𝑠 + 𝜂 + (𝑡 − 1)𝜏, 𝑇𝑠 + 𝜂 + 𝑡𝜏]). Let the
et of all recommendation times be  ∶= {ℎ0, ℎ1,… , ℎ𝐻}. It is worth noting that, the following description aims to solve the model
t time point ℎ0 and generate path recommendations from ℎ0 to ℎ𝐻 . However, the methodology is easy to be extended to a rolling
orizon implementation where the model can be solved at any given time interval ℎ̃ ∈ . In this way, the service operation and
emand information can be updated over time. Details of this discussion can be found in Section 4.1.

Given the new operations during the incident, we obtain a feasible path set 𝑅𝑘 for each OD pair 𝑘. Note that 𝑅𝑘 includes
ll feasible services that are provided by the PT operator. A path 𝑟 ∈ 𝑅𝑘 may be waiting for the system to recover (i.e., using
he incident line), or transfer to nearby bus lines, using shuttle services, etc. We do not consider non-PT modes, such as Uber or
riving for the following reasons: (1) The study aims to design a path recommendation system used by PT operators to provide path
lternative recommendations to all PT users. Considering non-PT modes needs the supply information of all other travel modes and
ven consider non-PT users (such as the impact of traffic congestion on drivers), which is beyond the scope of this study. Future
esearch may consider a multi-modal path recommendation system. (2) Passengers using non-PT modes can be simply treated as
emand reduction for the PT system. So their impact on the PT system is still captured.

Let 𝑑ℎ𝑘 be the number of passengers using the PT system with OD pair 𝑘 ∈  and departure time ℎ ∈ . It can be treated as the
ormal demand minus the number of passengers leaving the PT system. As we do not have full information about future demand
nd the number of passengers leaving the system, 𝑑ℎ𝑘 is an uncertainty variable that will be discussed in Section 3.4. Let 𝑓ℎ𝑘𝑟 be
he number of passengers departing at time interval ℎ using OD pair 𝑘 and path 𝑟 ∈ 𝑅𝑘. By definition:

∑

𝑟∈𝑅𝑘

𝑓ℎ𝑘𝑟 = 𝑑ℎ𝑘 ∀ℎ ∈ , 𝑘 ∈  (2)

et 𝑝ℎ𝑘𝑟 be the corresponding path share of 𝑓ℎ𝑘𝑟 (i.e., 𝑝ℎ𝑘𝑟 = 𝑓ℎ𝑘𝑟∕𝑑ℎ𝑘 and ∑

𝑟∈𝑅𝑘
𝑝ℎ𝑘𝑟 = 1). For convenience of description, we define

∶= {(ℎ, 𝑘, 𝑟) ∶ ∀ℎ ∈ ,∀𝑘 ∈ , 𝑟 ∈ 𝑅𝑘} as the set of all path indices. Then the optimal flow problem can be formulated as:

min
𝒇 ,𝒑

𝑍(𝒇 ) = Sum of all passengers’ travel time (3a)

s.t.
∑

𝑟∈𝑅𝑘

𝑝ℎ𝑘𝑟 = 1 ∀ ℎ ∈ , 𝑘 ∈ , (3b)

𝑓ℎ𝑘𝑟 = 𝑑ℎ𝑘 ⋅ 𝑝ℎ𝑘𝑟 ∀ (ℎ, 𝑘, 𝑟) ∈  , (3c)

1 That is, we assume during the disruption, operators would first change the supply to accommodate for the disruption, then provide path recommendations
hat incorporate the supply changes.

2 Note that some of those passengers may schedule their departure times after 𝑇 + 𝜂. These passengers will be considered as demand in other time intervals.
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Fig. 2. Explanation for the impact of adding an additional one unit flow to the system.

𝑓ℎ𝑘𝑟 ≥ 0 ∀ (ℎ, 𝑘, 𝑟) ∈  , (3d)

0 ≤ 𝑝ℎ𝑘𝑟 ≤ 1 ∀ (ℎ, 𝑘, 𝑟) ∈  (3e)

where 𝒇 ∶= (𝑓ℎ𝑘𝑟)ℎ,𝑘,𝑟∈ and 𝒑 ∶= (𝑝ℎ𝑘𝑟)ℎ,𝑘,𝑟∈ . 𝑍(𝒇 ) is the system travel time which has no analytical expression. It can only be
obtained after each network loading or simulation process (see Section 2.4). Note that using both 𝒇 and 𝒑 in the optimization
problem is redundant, but it is useful for explaining the methodology.

If there is no uncertainty in the system, the optimal path shares (𝑝∗ℎ𝑘𝑟) obtained from the solution of Eq. (3) are the
recommendation proportions. That is, for all passengers with OD pair 𝑘 and departure time ℎ, the system will recommend them
to use path 𝑟 with probability 𝑝∗ℎ𝑘𝑟. However, Eq. (3) is a conceptual formulation, it cannot be solved directly because 𝑍(𝒇 ) has
no analytical expression. Moreover, given the uncertainties in demand, the final recommended path shares may not be 𝑝∗ℎ𝑘𝑟. In the
following sections, we elaborate on how to solve the robust ‘‘optimal flow problem’’ with demand uncertainties.

3.3. Simulation-based linearization of the objective function

In this section, we propose a simulation-based linearization for the non-analytical 𝑍(𝒇 ) based on a first-order approximation.
𝑍(𝒇 ) can be approximated as:

�̂�(𝒇 ) = 𝑍(�̃� ) + (𝒇 − �̃� )𝑇
𝜕𝑍(𝒇 )
𝜕𝒇

|𝒇=�̃� (4)

where �̂�(𝒇 ) is the first-order approximation of 𝑍(𝒇 ). �̃� is a reference flow for the first-order approximation. 𝑍(�̃� ) is the system travel
time estimated by simulation with �̃� as input. 𝜕𝑍(𝒇 )

𝜕𝒇 = ( 𝜕𝑍(𝒇 )
𝜕𝑓ℎ𝑘𝑟

)ℎ,𝑘,𝑟∈ is the gradient vector of 𝑍(𝒇 ). As �̃� and 𝑍(�̃� ) are pre-determined,
the only unknown part is 𝜕𝑍(𝒇 )

𝜕𝒇 |𝒇=�̃� . Notice that 𝜕𝑍(𝒇 )
𝜕𝑓ℎ𝑘𝑟

|𝒇=�̃� represents the change of system travel time caused by one unit of flow
change in 𝑓ℎ𝑘𝑟. It can be approximated as:

𝜕𝑍(𝒇 )
𝜕𝑓ℎ𝑘𝑟

|𝒇=�̃� ≈
𝑍(�̃� + 𝒆ℎ𝑘𝑟) −𝑍(�̃� )

1
(5)

where 𝒆ℎ𝑘𝑟 represents a vector with only the (ℎ, 𝑘, 𝑟)th element being 1 and others zero. Eq. (5) represents the numerical
approximation of the gradient. Now we only need to calculate 𝑍(�̃� + 𝒆ℎ𝑘𝑟) −𝑍(�̃� ). A naive method to do that is to run a simulation
with �̃� + 𝒆ℎ𝑘𝑟 as input. However, as running the simulation is time-consuming, this method is not efficient. Note that since we
already run a simulation with �̃� as input, it is possible to directly calculate the marginal change due to the additional unit of flow
(i.e., calculate the additional travel time increase to the system if one additional flow is added to 𝑓ℎ𝑘𝑟).

Consider an example journey of 𝑓ℎ𝑘𝑟 in Fig. 2. Let ℎ𝑘𝑟 be the set of passengers composing the flow of 𝑓ℎ𝑘𝑟 (i.e., the green
passengers in Fig. 2). These passengers have origin station 𝑎1 and destination station 𝑎7, and the path includes a transfer from
station 𝑎 to station 𝑎 . Let the average travel time of 𝑓 be 𝑇 A (�̃� ). Suppose that one more passenger is added to 𝑓 .
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First of all, the system travel time is increased by 𝑇 A
ℎ𝑘𝑟(�̃� ) due to the increase in the flow amount. Note that considering the

marginal calculation, we ignore the impact of the added passenger on the increase in 𝑇 A
ℎ𝑘𝑟(�̃� ). Besides, all passengers in the red-

dashed square may experience higher travel times. Passengers at station 𝑎1 and 𝑎5 who queue behind the green passenger may have
additional waiting time if the train that ℎ𝑘𝑟 used is full after departure (under the simulation results of �̃� ), because the increase
of the flow by one in 𝑓ℎ𝑘𝑟 will occupy one available capacity for these waiting passengers, and one of them will have to board the
next train (i.e., wait for one more headway). Denote the total increase in system travel time for passengers queuing behind ℎ𝑘𝑟
as 𝑇Q

ℎ𝑘𝑟(�̃� ). The detailed calculation of 𝑇Q
ℎ𝑘𝑟(�̃� ) is shown in Appendix B.1.

For passengers waiting at stations where ℎ𝑘𝑟 are already on-board (referred to as on-board stations, e.g., station 𝑎2), adding
one flow to 𝑓ℎ𝑘𝑟 reduces the available capacity when the vehicle arrives at these on-board stations. The queuing passengers at the
onboard stations may not be able to board due to the reduction of capacity. Specifically, if a vehicle is full when it departs from an
onboard station under flow pattern �̃� , adding one passenger to 𝑓ℎ𝑘𝑟 makes one passenger waiting at the on-board station unable to
board his/her original boarded vehicle. And the system travel time is increased by one headway for each of these onboard stations.
Denote the travel time increase for passengers waiting at on-board stations as 𝑇O

ℎ𝑘𝑟(�̃� ). The detailed calculation of 𝑇O
ℎ𝑘𝑟(�̃� ) is shown

in Appendix B.2.
Therefore, in this way, depending on whether the vehicle is full or not under flow pattern �̃� , the increase in system travel

time due to adding one passenger to 𝑓ℎ𝑘𝑟 can be calculated without running the simulation again. These increases come from
three parts: (1) the average travel time of ℎ𝑘𝑟 due to increasing in flow amount (i.e., 𝑇 A

ℎ𝑘𝑟(�̃� )), (2) the additional waiting time
for passengers queuing behind ℎ𝑘𝑟 (i.e., 𝑇Q

ℎ𝑘𝑟(�̃� )), and (3) the additional waiting time for passengers queuing at ℎ𝑘𝑟’s on-board
stations (i.e., 𝑇O

ℎ𝑘𝑟(�̃� )). Specifically, we have

𝑍(�̃� + 𝒆ℎ𝑘𝑟) −𝑍(�̃� ) = 𝑇 A
ℎ𝑘𝑟(�̃� ) + 𝑇Q

ℎ𝑘𝑟(�̃� ) + 𝑇O
ℎ𝑘𝑟(�̃� ) (6)

Consequently, 𝜕𝑍(𝒇 )
𝜕𝒇 |𝒇=�̃� can be obtained from Eq. (5). Define 𝜷(�̃� ) ∶= 𝜕𝑍(𝒇 )

𝜕𝒇 |𝒇=�̃� . Then the objective function becomes:

�̂�(𝒇 ) = 𝑍(�̃� ) + 𝜷(�̃� )𝑇 (𝒇 − �̃� ) (7)

here 𝜷(�̃� ) = (𝛽ℎ𝑘𝑟)ℎ,𝑘,𝑟∈ and 𝛽ℎ𝑘𝑟 =
𝜕𝑍(𝒇 )
𝜕𝑓ℎ𝑘𝑟

|𝒇=�̃� . Eq. (7) is a linear function of 𝒇 , which supports for addressing uncertainties in the
optimization problem.

3.4. Demand uncertainty

The uncertainty of 𝑑ℎ𝑘 comes from two different parts. The first is the inherent demand variations across different days, and the
econd is the uncertainty in how many passengers leave the PT system during the incident. In this section, these two uncertainties
re considered as a whole by introducing an ellipsoidal uncertainty set and three polyhedral uncertainty sets.

From constraint (3c), we can substitute 𝑓ℎ𝑘𝑟 = 𝑑ℎ𝑘 ⋅ 𝑝ℎ𝑘𝑟 to the objective function and rewrite Eq. (7) as:

�̂�(𝒇 ) = �̂�(𝒑) = 𝑍(�̃� ) +
∑

(ℎ,𝑘,𝑟)∈
𝛽ℎ𝑘𝑟 ⋅ (𝑑ℎ𝑘 ⋅ 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟) (8)

Note that 𝛽ℎ𝑘𝑟 is a function of �̃� , for simplicity we ignore �̃� in the derivation process.
To model the uncertainty of 𝑑ℎ𝑘, we introduce an auxiliary decision variable 𝑡 and rewrite the optimal flow problem as:

min
𝒑, 𝑡

𝑡 (9a)

s.t. 𝑡 ≥ 𝑍(�̃� ) +
∑

(ℎ,𝑘,𝑟)∈
𝛽ℎ𝑘𝑟 ⋅ (𝑑ℎ𝑘 ⋅ 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟), (9b)

Constraints (3b) and (3e) (9c)

Constraint (9b) can be rewritten as
∑

ℎ,𝑘

∑

𝑟∈𝑅𝑘

𝛽ℎ𝑘𝑟 ⋅ 𝑑ℎ𝑘 ⋅ 𝑝ℎ𝑘𝑟 ≤ 𝑡 −𝑍(�̃� ) +
∑

(ℎ,𝑘,𝑟)∈
𝛽ℎ𝑘𝑟𝑓ℎ𝑘𝑟 (10)

Eq. (10) can be written in a matrix form as:

𝒂𝑇 𝒑 ≤ 𝑏 (11)

where 𝒂 ∈ R| | with the entry 𝑎ℎ𝑘𝑟 = 𝛽ℎ𝑘𝑟𝑑ℎ𝑘, ∀ (ℎ, 𝑘, 𝑟) ∈  . And 𝑏 = 𝑡 −𝑍(�̃� ) +
∑

(ℎ,𝑘,𝑟)∈ 𝛽ℎ𝑘𝑟𝑓ℎ𝑘𝑟. Define 𝒅 = (𝑑ℎ𝑘)ℎ∈,𝑘∈.

Proposition 1. If 𝒅 is normally distributed with 𝒅 ∼  (�̄�,𝜮), then in a RO problem where Constraint (11) is guaranteed to be satisfied
with probability of at least 1 − 𝜀 (i.e., P[𝒂𝑇 𝒑 ≤ 𝑏] ≥ 1 − 𝜀), the robust constraint can be formulated as:

(𝑨�̄� +𝑨𝑫𝒛)𝑇 𝒑 ≤ 𝑏, ∀𝒛 ∈ E (12)

where 𝑨 ∈ R| |×𝐻𝐾 with entry 𝐴ℎ𝑘𝑟,ℎ′𝑘′ = 𝛽ℎ𝑘𝑟 if ℎ = ℎ′ and 𝑘 = 𝑘′, otherwise 𝐴ℎ𝑘𝑟,ℎ′𝑘′ = 0. 𝑫 is the Cholesky decomposition of 𝜮
(i.e., 𝜮 = 𝑫𝑫𝑇 ). 𝒛 are the perturbation variables (i.e., 𝒅 = �̄� +𝑫𝒛) and E =

{

𝒛 ∈ R𝐻𝐾 ∶ ‖𝑧‖2 ≤ 𝜌1−𝜀
}

(i.e., the ellipsoidal uncertainty
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Proof.
Step 1: We first prove that P[𝒂𝑇 𝒑 ≤ 𝑏] ≥ 1 − 𝜀 is equivalent to (𝑨�̄�)𝑇 𝒑 + 𝜌1−𝜀 ‖‖(𝑨𝑫)𝑇 𝒑‖

‖2 ≤ 𝑏.
Since 𝒅 is normally distributed, we have 𝒂 = 𝑨𝒅 is normally distributed with 𝒂 ∼  (𝑨�̄�,𝑨𝛴𝑨𝑇 ). Similarly, 𝒂𝑇 𝒑 ∈ R is also

normally distributed with

𝒂𝑇 𝒑 ∼  ((𝑨�̄�)𝑇 𝒑,𝒑𝑇𝑨𝜮𝑨𝑇 𝒑) (13)

If we want Constraint (11) to hold with probability at least 1 − 𝜀, it suffices to have:

(𝑨�̄�)𝑇 𝒑 + 𝜌1−𝜀
√

𝒑𝑇𝑨𝜮𝑨𝑇 𝒑 ≤ 𝑏 (14)

Substituting 𝜮 = 𝑫𝑫𝑇 into Eq. (14) completes the proof of Step 1.
Step 2: We need to show that the robust counterpart of Eq. (12) is (𝑨�̄�)𝑇 𝒑 + 𝜌1−𝜀 ‖‖(𝑨𝑫)𝑇 𝒑‖

‖2 ≤ 𝑏.
Eq. (12) is equivalent to:

(𝑨�̄�)𝑇 𝒑 + max
𝒛∈E

(𝑨𝑫𝒛)𝑇 𝒑 ≤ 𝑏. (15)

Let 𝛿(𝒛 ∣ E) be the indicator function on set E:

𝛿(𝒛 ∣ E) =

{

1, if 𝒛 ∈ E

0, otherwise
(16)

Then the convex conjugate of 𝛿(𝒛 ∣ E) (also known as the support function) can be derived as (Bertsimas and den Hertog,
2020):

𝛿∗(𝒚 ∣ E) = sup
𝒛∈R𝐻𝐾

{𝒚𝑇 𝒛 − 𝛿(𝒛 ∣ E)} = sup
𝒛∈E

𝒚𝑇 𝒛 = 𝜌1−𝜀 ‖𝒚‖2 (17)

Therefore, Eq. (15) can be rewritten with the convex conjugate:

(𝑨�̄�)𝑇 𝒑 + 𝛿∗((𝑨𝑫)𝑇 𝒑 ∣ ) = (𝑨�̄�)𝑇 𝒑 + 𝜌1−𝜀
‖

‖

‖

(𝑨𝑫)𝑇 𝒑‖‖
‖2

≤ 𝑏 (18)

which finishes the proof of Step 2. Combining Steps 1 and 2 finishes the proof of the whole proposition. □

We observe that the ellipsoidal demand uncertainty performs like a regularization. It prevents 𝒑 from being large in directions
with considerable uncertainty in the demand.

Remark 1. In the RO, the ellipsoidal uncertainty set can be used no matter what distribution 𝒅 follows. If 𝒅 is normally distributed,
the parameter 𝜌1−𝜀 can be interpreted as the probability that constraint (11) holds. The use of the multivariate normality assumption
in Proposition 1 is for explaining the physical meaning of ellipsoidal uncertainty set and facilitating the choice of hyperparameters
(i.e., 𝜌1−𝜀 and 𝑫). Moreover, in the case study, we partially validate the multivariate normality assumption of 𝒅 using smart card
data. The Mardia’s Skewness Test (Cain et al., 2017) shows that 𝒅 has no significant skewness.

Eq. (12) (i.e., the ellipsoidal uncertainty set) captures the correlation between demands at different time intervals and OD pairs.
However, it does not impose any upper or lower bounds on 𝑑ℎ𝑘. In reality, the demand level for a specific OD pair and time interval
is usually bounded, which can be expressed as:

𝑑L
ℎ𝑘 ≤ 𝑑ℎ𝑘 ≤ 𝑑U

ℎ𝑘 (19)

where 𝑑L
ℎ𝑘 and 𝑑U

ℎ𝑘 are the corresponding lower and upper bounds for 𝑑ℎ𝑘, respectively. Their values can be obtained from historical
demand data. Eq. (19) can be rewritten in a vector form as 𝒅L ≤ 𝒅 ≤ 𝒅U, where 𝒅U = (𝑑U

ℎ𝑘)ℎ∈,𝑘∈ and 𝒅L = (𝑑L
ℎ𝑘)ℎ∈,𝑘∈. Since we

have 𝒅 = �̄� +𝑫𝒛, a simple manipulation leads to

𝒅L − �̄� ≤ 𝑫𝒛 ≤ 𝒅U − �̄� (20)

We can rewrite it as a ‘‘polyhedral uncertainty set’’: P1 =
{

𝒛 ∈ R𝐻𝐾 ∶ 𝒅L − �̄� ≤ 𝑫𝒛 ≤ 𝒅U − �̄�
}

.
Eq. (19) ensures the boundaries for each individual demand. Another similar constraint for the demand uncertainty is that:

within a given time interval, the total demand across all OD pairs should also be bounded. This constraint can avoid some extreme
scenarios that Eq. (19) cannot capture (e.g., all 𝑑ℎ𝑘 are at the lower or upper bounds). Mathematically:

𝑑L
ℎ ≤

∑

𝑘∈
𝑑ℎ𝑘 ≤ 𝑑U

ℎ (21)

where 𝑑L
ℎ and 𝑑U

ℎ are the lower and upper bounds for the total demand in time interval ℎ, which can be obtained from the historical
demand. Define 𝑺 ∈ R𝐻×𝐻𝐾 , where the element 𝑆ℎ,ℎ′𝑘 = 1 if ℎ = ℎ′, otherwise 𝑆ℎ,ℎ′𝑘 = 0. Then Eq. (21) can be rewritten in a matrix
form:

𝒅L
 − 𝑺�̄� ≤ 𝑺𝑫𝒛 ≤ 𝒅U

 − 𝑺�̄� (22)

where 𝒅U
 = (𝑑U

ℎ )ℎ∈ and 𝒅L
 = (𝑑L

ℎ)ℎ∈ . And Eq. (22) can also be represented as a polyhedral uncertainty set: P2 =
{ 𝐻𝐾 L ̄ U ̄}
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As the RO aims to optimize under the ‘‘worst case’’ scenario and our objective function is the system travel time, intuitively, the
orst-case scenario will be the largest demand in the uncertainty set. This may make the worst-case demand unrealistic since the
xtremely large demand seldom happens. What we expect in the RO is that the model can capture some critical OD pairs where the
igh demand in these OD pairs can make the system more congested (as opposed to high demand in all OD pairs). In order to let
he RO capture critical OD pairs, we add an additional constraint on the total demand:

∑

ℎ∈,𝑘∈
𝑑ℎ𝑘 ≤ 𝛤 ⋅

∑

ℎ∈,𝑘∈
𝑑ℎ𝑘 (23)

here 𝛤 > 0 is a predetermined constant. 𝛤 = 1 means we assume the total demand in the worst-case scenario is the same as the
ominal one, but the spatial and temporal distributions are different. The worst-case scenario will have more demand on critical
D pairs but less demand on others. The value of 𝛤 can be determined based on the highest total demand observed over a time
eriod.

Similarly, Eq. (23) can be written in a matrix form:

𝟏𝑇 (�̄� +𝑫𝒛) ≤ 𝛤 ⋅ 𝟏𝑇 �̄� (24)

here 𝟏 ∈ R𝐻𝐾 is a vector with all elements one. And we define another polyhedral uncertainty set: P3 =
{

𝒛 ∈ R𝐻𝐾 ∶ 𝟏𝑇 (�̄� +𝑫𝒛) ≤
𝛤 ⋅ 𝟏𝑇 �̄�

}

.
Therefore, the final robust constraint for Eq. (11) is

(𝑨�̄� +𝑨𝑫𝒛)𝑇 𝒑 ≤ 𝑏, ∀𝒛 ∈ E ∩P ∩P2 ∩P3 (25)

To derive the robust counterpart of the constraint, we first introduce the following lemma.

emma 1. For a constraint �̄�𝑇 𝒙 + 𝛿∗(𝑷 𝑇 𝒙 ∣ ) ≤ 𝑏, let 1,… ,𝑘 be closed convex sets, such that
⋂

𝑖 𝑟𝑖(𝑖) ≠ ∅,3 and let  = ∩𝑘
𝑖=1𝑖.

Then,

𝛿∗(𝒚 ∣ ) = min
𝒚1 ,…,𝒚𝑘

{
𝑘
∑

𝑖=1
𝛿∗(𝒚𝑖 ∣ 𝑖) ∣

𝑘
∑

𝑖=1
𝒚𝑖 = 𝒚},

nd the constraint becomes
{

�̄�𝑇 𝒙 +
∑𝑘

𝑖=1 𝛿
∗(𝒚𝑖 ∣ 𝑖) ≤ 𝑏

∑𝑘
𝑖=1 𝒚𝑖 = 𝑷 𝑇 𝒙

here 𝛿∗(⋅ ∣ ⋅) is the support function (i.e., convex conjugate of the indicator function).

The proof of Lemma 1 can be found in Ben-Tal et al. (2015). From Proposition 1, we have 𝛿∗(𝒚 ∣ E) = 𝜌1−𝜀 ‖𝒚‖2. For the
polyhedral uncertainty set, consider a general form P = {𝒛 ∶ 𝑯𝒛 ≤ 𝒄}. And the support function for P is

𝛿∗(𝒚 ∣ P) = max
𝒛

{𝒚𝑇 𝒛 ∣ 𝑯𝒛 ≤ 𝒄} = min
𝒖
{𝒄𝑇 𝒖 ∣ 𝑯𝑇 𝒖 = 𝒚, 𝒖 ≥ 0} (26)

where the second equality follows from linear programming duality. Eq. (26) can be used to derive the support function for P1,
P2, and P3. For example, consider the robust counterpart for Eq. (23), we have

𝛿∗(𝒚6 ∣ P3) = min
𝑢3

{(𝛤 − 1) ⋅ (𝟏𝑇 �̄�) ⋅ 𝑢3 ∣ (𝟏𝑇𝑫)𝑇 𝑢3 = 𝒚6, 𝑢3 ≥ 0} (27)

where 𝒚6 ∈ R𝐻𝐾 and 𝑢3 ∈ R are decision variables in the RO model. Note that the subscripts for 𝒚 and 𝑢 (i.e., 6 and 3) are used for
the consistency in Eq. (28).

Based on Lemma 1, the robust counterpart for Eq. (25) is

(𝑨�̄�)𝑇 𝒑 + 𝜌1−𝜀 ‖‖𝒚1‖‖2 + (𝒅U − �̄�)𝑇 𝒖1 + (�̄� − 𝒅L)𝑇 𝒖2 + (𝒅U
 − 𝑺�̄�)𝑇 𝒗1 + (𝑺�̄� − 𝒅L

 )𝑇 𝒗2
+ (𝛤 − 1) ⋅ (𝟏𝑇 �̄�) ⋅ 𝑢3 ≤ 𝑏 (28a)

𝑫𝑇 𝒖1 = 𝒚2 (28b)

−𝑫𝑇 𝒖2 = 𝒚3 (28c)

(𝑺𝑫)𝑇 𝒗1 = 𝒚4 (28d)

− (𝑺𝑫)𝑇 𝒗2 = 𝒚5 (28e)

(𝟏𝑇𝑫)𝑇 𝑢3 = 𝒚6 (28f)
6
∑

𝑖=1
𝒚𝑖 = (𝑨𝑫)𝑇 𝒑 (28g)

3 𝑟𝑖( ) indicates the relative interior of the set  .
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𝒖1, 𝒖2, 𝒗1, 𝒗2, 𝑢3 ≥ 0 (28h)

Hence, the RO problem can be formulated as

min
𝒑,𝒖,𝒗,𝒚,𝑡

𝑡 (29a)

s.t.
∑

(ℎ,𝑘,𝑟)∈
𝛽ℎ𝑘𝑟 ⋅ 𝑑ℎ𝑘 ⋅ 𝑝ℎ𝑘𝑟 + 𝜌1−𝜀 ‖‖𝒚1‖‖2 + (𝒅U − �̄�)𝑇 𝒖1 + (�̄� − 𝒅L)𝑇 𝒖2 + (𝒅U

 − 𝑺�̄�)𝑇 𝒗1

+ (𝑺�̄� − 𝒅L
 )𝑇 𝒗2 + (𝛤 − 1) ⋅ (𝟏𝑇 �̄�) ⋅ 𝑢3 +𝑍(�̃� ) −

∑

(ℎ,𝑘,𝑟)∈
𝛽ℎ𝑘𝑟𝑓ℎ𝑘𝑟 ≤ 𝑡 (29b)

Constraints (28b)–(28h) (29c)

Constraints (3b) and (3e) (29d)

By eliminating 𝑡 and inserting Constraint (29b) in the objective function it becomes

�̂�(𝒑, 𝒖, 𝒗, 𝒚)RC =
∑

(ℎ,𝑘,𝑟)∈
𝛽ℎ𝑘𝑟 ⋅ (𝑑ℎ𝑘 ⋅ 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟) + 𝜌1−𝜀 ‖‖𝒚1‖‖2 + (𝒅U − �̄�)𝑇 𝒖1 + (�̄� − 𝒅L)𝑇 𝒖2

+ (𝒅U
 − 𝑺�̄�)𝑇 𝒗1 + (𝑺�̄� − 𝒅L

 )𝑇 𝒗2 + (𝛤 − 1) ⋅ (𝟏𝑇 �̄�) ⋅ 𝑢3 +𝑍(�̃� ) (30)

which yields a second-order cone programming (SOCP).

3.5. Solution procedure

After incorporating the demand uncertainty, the final robust counterpart (RC) of the optimal flow problem can be formulated
as:

[𝑅𝐶(�̃� )] min
𝒑,𝒖,𝒗,𝒚

�̂�(𝒑, 𝒖, 𝒗, 𝒚)RC =
∑

(ℎ,𝑘,𝑟)∈
𝛽ℎ𝑘𝑟(�̃� ) ⋅ (𝑑ℎ𝑘 ⋅ 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟) + 𝜌1−𝜀 ‖‖𝒚1‖‖2 + (𝒅U − �̄�)𝑇 𝒖1

+ (�̄� − 𝒅L)𝑇 𝒖2 + (𝒅U
 − 𝑺�̄�)𝑇 𝒗1 + (𝑺�̄� − 𝒅L

 )𝑇 𝒗2 + (𝛤 − 1) ⋅ (𝟏𝑇 �̄�) ⋅ 𝑢3 +𝑍(�̃� ) (31a)

s.t. Constraints (28b) − (28h) (31b)
∑

𝑟∈𝑅𝑘

𝑝ℎ𝑘𝑟 = 1 ∀ℎ ∈ , 𝑘 ∈  (31c)

0 ≤ 𝑝ℎ𝑘𝑟 ≤ 1 ∀(ℎ, 𝑘, 𝑟) ∈  (31d)

This SOCP can be efficiently solved by inner interior point methods that are embedded in many existing solvers.
However, due to the first-order approximation of 𝑍(𝒇 ), 𝛽ℎ𝑘𝑟(�̃� ) needs to be updated once a new flow pattern is obtained. Hence,

after obtaining 𝒑∗ from the RC problem, the simulation should be run again to update 𝛽ℎ𝑘𝑟(�̃� ). Before that, the corresponding worst-
case demand (WD), which will be used as the new �̃� , is needed. It can be obtained by solving the worst case 𝒛 ∈ E∩P1∩P2∩P3:

[𝑊𝐷(𝒑∗)] max
𝒛

(𝑨𝑫𝒛)𝑇 𝒑∗ (32a)

s.t. ‖𝒛‖2 ≤ 𝜌1−𝜀 (32b)

𝒅L − �̄� ≤ 𝑫𝒛 ≤ 𝒅U − �̄� (32c)

𝒅L
 − 𝑺�̄� ≤ 𝑺𝑫𝒛 ≤ 𝒅U

 − 𝑺�̄� (32d)

𝟏𝑇 (�̄� +𝑫𝒛) ≤ 𝛤 ⋅ 𝟏𝑇 �̄� (32e)

If the solution for Eq. (32) is 𝒛∗, the worse case demand is 𝒅∗ = �̄� +𝑫𝒛∗. Next, we can update 𝜷(�̃� ) and 𝑍(�̃� ) as

𝑍(�̃� ), 𝜷(�̃� ) = Sim-FOA(𝒅∗,𝒑∗) (33)

where �̃� in Eq. (33) indicates 𝑓ℎ𝑘𝑟 = 𝑑∗ℎ𝑘 ⋅ 𝑝
∗
ℎ𝑘𝑟. And Sim-FOA(⋅) is a pseudo function of simulation plus first-order approximation as

described in Section 3.3.
The RC, WD, and Sim-FOA(⋅) problems need to be solved iteratively. This can be treated as a fixed-point problem. A conventional

way to solve a fixed-point problem is the method of successive averages (MSA). In the typical system optimal traffic assignment
problem, the optimal flow pattern is reached when for every OD pair, the marginal costs of all paths for this OD pair are the same.
This implies that, ideally, when the flow distribution is optimal, we should have 𝛽ℎ𝑘𝑟(�̃� ) = 𝛽ℎ𝑘𝑟′ (�̃� ) for all 𝑟, 𝑟′ ∈ 𝑅𝑘 ⧵𝑅NoFlow

𝑘 , where
𝑅NoFlow
𝑘 = {𝑟 ∈ 𝑅𝑘 ∣ 𝑓ℎ𝑘𝑟 = 0} is the path set with zero flows. This implies that at the system optimal assignment, the marginal cost

(travel time) of every non-zero flow path is the same (i.e., one cannot decrease the system travel time by switching passengers from
one path to another).

However, in our study, this cannot be set as the convergence criterion because, in the dynamic transit assignment context, the
cost function is not continuous due to left behind. Adding one more passenger to a path may lead to the system travel time increased
by one or more headways. The following example illustrates that 𝛽ℎ𝑘𝑟(�̃� ) can be arbitrarily large, which may cause the criterion of

̃ ̃
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Fig. 3. Example for arbitrarily large 𝛽ℎ𝑘𝑟(�̃� ).

Example 1. Consider a single direction bus line with 𝑁 stations (Fig. 3) and a fixed headway 𝑊 . Assume every bus has a capacity
of 1. There is one passenger waiting at each station except for the first station (i.e., there are 𝑁−1 waiting passengers). Now assume
that one more passenger is added to station 1. Since the capacity of buses is 1, the newly added passenger will force all waiting
passengers to be left behind one more time. Hence, the total added system travel time is (𝑁 − 1) ×𝑊 . In this scenario, the 𝛽ℎ𝑘𝑟(�̃� )
associated with the added passenger can be arbitrarily large depending on the number of stations 𝑁 .

Therefore, in this study, we define the convergence criteria based on the value of system travel time (i.e., when the value of the
system travel time is relatively stable within a range). Specifically, it is assumed that the MSA algorithm has converged if

|

|

|

|

|

|

𝑍(�̃� )(𝑛) − 1
𝑁Cvg

𝑛−1
∑

𝑛′=𝑛−𝑁Cvg
𝑍(�̃� )(𝑛′)

|

|

|

|

|

|

≤ 𝜖 (34)

where 𝑍(�̃� )(𝑛) is the system travel time at the 𝑛th iteration and 𝜖 is a predetermined threshold. Eq. (34) means that when the current
system travel time is close to its average value of the last 𝑁Cvg iterations, the algorithm terminates. Taking the average of the last
𝑁Cvg iterations can mitigate the impact of fluctuations caused by the discontinuity of the system travel time.

The whole solution algorithm is described in Algorithm 1. Line 6 indicates the MSA step. Lines 10 and 11 mean that we will use
the path shares with the smallest system travel time over the last 𝑁Cvg + 1 iterations.

Algorithm 1 Solution procedure of the robust path recommendation problem

1: Initialize 𝒑(0) (e.g., uniform path shares), 𝒅(0) (e.g., nominal demand) and specify 𝑁Cvg, 𝜖.
2: Set iteration counter 𝑛 = 0.
3: do
4: 𝑍(�̃� )(𝑛), 𝜷(�̃� )(𝑛) = Sim-FOA(𝒅(𝑛),𝒑(𝑛))
5: Solve the RC problem (Eq. (31)) with 𝑍(�̃� )(𝑛) and 𝜷(�̃� )(𝑛) as inputs, and return �̂�(𝑛+1)

6: 𝒑(𝑛+1) = 1
𝑛+1 �̂�

(𝑛+1) + (1 − 1
𝑛+1 )𝒑

(𝑛)

7: Solve the WD problem (Eq. (32)) with 𝒑(𝑛+1) as input and return 𝒅(𝑛+1)

8: 𝑛 = 𝑛 + 1
9: while 𝑛 ≤ 𝑁Cvg or |

|

|

𝑍(�̃� )(𝑛) − 1
𝑁Cvg

∑𝑛−1
𝑛′=𝑛−𝑁Cvg 𝑍(�̃� )(𝑛′)||

|

> 𝜖

10: 𝑛∗ = argmin𝑛′=𝑛−𝑁Cvg ,...,𝑛 𝑍(�̃� )(𝑛′)

11: return 𝒑(𝑛∗)

Let 𝒑∗ be the optimal path shares by from Algorithm 1. To realize the optimal path shares in the real world, the following system
design can be used:

• Transit operators deploy the recommendation system to smartphone apps, websites, and electrical screens at stations.
• Passengers, when using the system, input their origins, destinations, and departure times.
• For a passenger input OD pair 𝑘 and departure time ℎ, the system will return a single recommended path 𝑟 to them with

probability 𝑝∗ℎ𝑘𝑟.

In this way, we expect the final path flows are close to the system optimal path flows if passengers follow the recommendation. In
reality, passengers may have different preferences for different recommendations. That is, they may not follow the recommendations
if they are provided with an unpreferred path. Appendix C discusses how to solve another path-passenger matching problem that
incorporates passengers’ preferences.
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Fig. 4. Illustration of the rolling horizon implementation.

4. Model extensions

4.1. Solving the model in a rolling horizon

The model discussed in the previous section is a one-shot solution for path recommendation, which means the model will be run
at the beginning of an incident (ℎ0) and output the recommendations for the whole period of interest [ℎ0, ℎ𝐻 ]. In application, the
model would be implemented in a rolling horizon framework.

Specifically, at time interval ℎ̃, we first update the demand and supply information, including new demand estimates, new
demand uncertainty sets, new available path sets, new service routes and frequencies, new incident duration estimates, etc. Based
on the formulation above (i.e., let ℎ0 = ℎ̃), we solve the model to obtain recommendations for time [ℎ̃, ℎ𝐻 ]. But we only implement
the recommendation strategies for the current time ℎ̃ (i.e., 𝑝∗

ℎ̃𝑘𝑟
). An illustration of the rolling horizon implementation is shown in

Fig. 4. In this way, the new information obtained with the evolution of the incident and system operations can be used to improve
model performance (this is known as adaptive RO).

In the case study, we did not implement the rolling horizon for the following reasons. (1) First, as we use the CTA system as
the case study, the operators in the selected incident did not update operation changes once the decisions have been made. Hence,
it becomes less meaningful for the rolling horizon with fixed operations. (2) Second, there are computational time challenges in
the case study. The main bottleneck comes from the simulation model. Running a simulation in the large-scale CTA network takes
around 0.6 min. And our algorithm requires around 35 iterations to converge (see Section 6.1). (3) Third, as mentioned before,
a more holistic implementation of the rolling horizon includes the update of the ‘‘uncertainty set’’, which implies an adaptive
robust optimization. This requires additional derivations on how to use previous demand realizations to generate the new demand
uncertainty set, which deserves separate future research.

4.2. Incident duration uncertainty

In this study, we assume operators have a reasonable estimate of incident duration. However, it is possible that we can only
obtain a distribution of incident duration. In this section, we show that our formulation can be easily extended to capture the
incident duration uncertainty with stochastic optimization (SO) techniques.4

Let the set of all possible incident scenarios be 𝛺. For example, 𝛺 may include incidents with a duration of 30, 40, or 50 min.
For each scenario 𝜉 ∈ 𝛺, we denote 𝛽ℎ𝑘𝑟(�̃� ; 𝜉) and 𝑍(�̃� ; 𝜉) as the approximated gradient and current system travel time under flow
�̃� and incident scenario 𝜉. Hence, the objective function for the RO problem becomes:

E[�̂�(𝒑, 𝒖, 𝒗, 𝒚)RC] =
∑

𝜉∈𝛺
P(𝜉)

[

𝑍(�̃� ; 𝜉) +
∑

(ℎ,𝑘,𝑟)∈
𝛽ℎ𝑘𝑟(�̃� ; 𝜉) ⋅ (𝑑ℎ𝑘 ⋅ 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟)

]

+ 𝜌1−𝜀 ‖‖𝒚1‖‖2

+ (𝒅U − �̄�)𝑇 𝒖1 + (�̄� − 𝒅L)𝑇 𝒖2 + (𝒅U
 − 𝑺�̄�)𝑇 𝒗1 + (𝑺�̄� − 𝒅L

 )𝑇 𝒗2 + (𝛤 − 1) ⋅ (𝟏𝑇 �̄�) ⋅ 𝑢3 (35)

where P(𝜉) is the probability of scenario 𝜉 being realized. The expectation above is taking over different incident scenarios. Define
𝑍(�̃� ;𝛺) ∶=

∑

𝜉∈𝛺 P(𝜉)𝑍(�̃� ; 𝜉) and 𝛽ℎ𝑘𝑟(�̃� ;𝛺) ∶=
∑

𝜉∈𝛺 P(𝜉)𝛽ℎ𝑘𝑟(�̃� ; 𝜉), substituting them into the objective function

E[�̂�(𝒑, 𝒖, 𝒗, 𝒚)RC] =
∑

(ℎ,𝑘,𝑟)∈
𝛽ℎ𝑘𝑟(�̃� ;𝛺) ⋅ (𝑑ℎ𝑘 ⋅ 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟) + 𝜌1−𝜀 ‖‖𝒚1‖‖2 + (𝒅U − �̄�)𝑇 𝒖1

+ (�̄� − 𝒅L)𝑇 𝒖2 + (𝒅U
 − 𝑺�̄�)𝑇 𝒗1 + (𝑺�̄� − 𝒅L

 )𝑇 𝒗2 + (𝛤 − 1) ⋅ (𝟏𝑇 �̄�) ⋅ 𝑢3 +𝑍(�̃� ;𝛺) (36)

As the constraints in the RO problem are not related to incident scenarios (i.e., 𝛽ℎ𝑘𝑟(�̃� ) and 𝑍(�̃� ) are not included in the constraint
part), this implies that incorporating the incident duration uncertainty with SO only requires a change in the objective function.

4 The reason for using SO, instead of RO, to capture incident duration uncertainty is that the worst-case scenario for the incident duration is always the
largest one, which makes the problem trivial and may not reflect reality.
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Fig. 5. Case study diagram. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Case study design

In the case study, we consider an actual incident in the Blue line of the Chicago Transit Authority (CTA) urban rail system
(Fig. 5). The incident starts at 8:14 AM and ends at 9:13 AM on Feb 1st, 2019 due to infrastructure issues between Harlem and
Jefferson Park stations. The entire Blue Line was suspended. During the disruption, the Loop (Chicago CBD area) is the destination
for most passengers. Usually, there are four paths leading to the Loop: (1) using Blue Line (i.e., waiting for the system to recover),
(2) using the parallel bus lines, (3) using the North–South (NS) bus lines to transfer to the Green Line, and (4) using the West–East
(WE) bus lines to transfer to the Brown Line. Based on the service structure, we can construct the route sets 𝑅𝑘 for each OD pair 𝑘.

5.1. Parameter setting

 is the set of all OD pairs with origins at the Blue Line and destinations at the Loop. The response time is set as 𝜂 = 0 for simplicity
(i.e., assuming a quick response for operators). The time interval is set to 𝜏 = 10 mins. The time period with recommendation is set
as ℎ𝐻 = 10, corresponding to 9:44 - 9:54 AM (i.e., 50 min after the end of the incident). In this study, we assume that the incident
duration is known or can be reasonably estimated. The factor of total demand level 𝛤 is set to 1.1, which is the 90% percentile of
the total demand distribution.

The validation of the simulation model’s performance is shown in Appendix D. Results show that the model can capture the
passenger and vehicle interactions well in the CTA system.

5.2. Quantification of uncertainty sets

The demand uncertainty is determined by the nominal demand �̄�, covariance matrix 𝜮 (which can be used to get 𝑫), and upper
and lower bounds for demand (i.e., 𝒅U, 𝒅L, 𝒅U

 , 𝒅L
). These can be estimated from historical demand. However, as the demand on

the incident day is smaller than usual given that some passengers may leave the system, we cannot directly use normal day smart
card data as historical demand. One possible solution is to use data from previous days with similar incidents. Nevertheless, this is
usually unavailable due to the lack of enough similar incidents. Hence, in this study, we first use survey results and historical smart
card data to generate ‘‘synthetic historical demand’’ samples, and then estimate the uncertainty set from the samples.

There are two sources of demand uncertainty: (1) the inherent demand variations across different days and (2) the uncertainty
of how many passengers left the PT system during the incident. The first part can be captured by historical smart card data (without
incidents). The second part is approximated by the survey results. According to previous survey-based studies, the proportion of the
passengers leaving the PT system during incidents is around 10%∼30% (Lin et al., 2016; Rahimi et al., 2020). Then, the ‘‘synthetic
historical demand’’ is generated as follows:

• Collect smart card data from a recent workday and calculate the demand vector without passengers leaving the system for
each (ℎ, 𝑘) (the demand for ℎ = 0, i.e., offloading passengers, can be obtained using the simulation model).
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Fig. 6. Demand patterns.

Table 1
Mardia test of multivariate normality.

Test 𝑝-value Test 𝑝-value

Mardia Skewness 1.00 Mardia Kurtosis 0.00

Note: The null hypothesis is that the samples are multivariate normally distributed. A small 𝑝-value
indicates we are more likely to reject the null hypothesis.

• For each (ℎ, 𝑘), we randomly draw a proportion of leaving passengers from a uniform distribution  (10%, 30%).5 The demand
after removing the leaving passengers is the incident period demand vector.

We collected a total of 16 weekdays from Jan 2019 (the previous month of the incident day) and generated 16 sample demand
vectors. The mean value is used as the nominal demand �̄� and the covariance matrix 𝜮 is estimated from these samples. The upper
and lower bounds for demand (i.e., 𝒅U, 𝒅L, 𝒅U

 , 𝒅L
) are set as the samples’ maximum and minimum values, respectively.

The hyperparameter 𝜌1−𝜀 for the ellipsoidal uncertainty set are chosen from these values: {0, 0.25, 0.52, 0.84, 1.28, 1.64, 2.33},
which corresponds to the {50, 60, 70, 80, 90, 95, 99} percentiles of the standard normal distribution. Note that 𝜌1−𝜀 = 0 represents
the case of no uncertainty (i.e., nominal model).

5.3. Data description

The nominal and actual (incident day) demand comparison is shown in Fig. 6. The total nominal demand is 5,499, similar to the
total actual demand (5,531), implying that introducing a proportion of leaving passengers (i.e., 10%–30%) can capture the demand
reduction on the incident day. We also observe that the aggregate nominal demand for each time interval is similar to that of the
incident day. The major differences happen at the first two time intervals (ℎ = 0, 1). However, looking at the demand for each (ℎ, 𝑘)
(Fig. 6(b)), the differences are more prominent. The discrepancy between nominal and actual demands indicates the potential for
the RO approach to perform better.

Table 1 shows the results of the Mardia test of multivariate normality (Cain et al., 2017) for demand samples. The Mardia test
is used to check whether the sample’s multivariate skewness and kurtosis are consistent with a multivariate normal distribution.
If both are satisfied, we can assume the samples are multivariate normally distributed. We observe that, in Table 1, the synthetic
historical demands have consistent skewness but inconsistent kurtosis with the multivariate normal distribution, suggesting that
they are not multivariate normally distributed. However, as skewness is a measure of the asymmetry of the probability distribution
of a random variable about its mean, the Mardia Skewness testing shows that the demand distribution is symmetric. Hence, it is
still reasonable to use the ellipsoidal uncertainty set to describe a symmetric distributed random variable. Moreover, as mentioned
in Remark 1, the distribution of a variable does not affect the definition of the uncertainty set (it only affects the calculation of
probability guarantees).

5 We use uniform distribution because we have no distributional information of the leaving passenger proportions.
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5.4. Benchmark models

The following approaches are used to obtain benchmark path shares.
Uniform path shares. The uniform path shares are defined as 𝑝ℎ𝑘𝑟 =

1
|𝑅𝑘|

∀ 𝑟 ∈ 𝑅𝑘. This is a naive model corresponding to the
intuition of ‘‘distributing passengers to different paths’’ when no information is available.

Capacity-based path shares. The capacity-based path shares aim to assign passengers to different paths according to the path
capacity. Specifically, for a path 𝑟 in OD pair 𝑘 and time ℎ, we calculate the path capacity as the total available capacity of all
vehicles passing through the first boarding station of the path (denoted as 𝐶ℎ𝑘𝑟). The capacity-based path shares are defined as

𝑝ℎ𝑘𝑟 =
𝐶ℎ𝑘𝑟

∑

𝑟∈𝑅𝑘
𝐶ℎ𝑘𝑟

∀ 𝑟 ∈ 𝑅𝑘, ℎ ∈ , 𝑘 ∈ , (37)

For example, for a path consisting of an NS bus route and the Green Line, 𝐶ℎ𝑘𝑟 is calculated as the total available capacity of all
buses at the boarding station of the NS bus route during time interval ℎ. The available capacity can be obtained from the simulation

odel using historical demand. The available capacity for the Blue Line (i.e., incident line) depends on the revised schedules during
he incident (i.e., the service suspension is considered). When no trains operate on the Blue Line, the corresponding 𝐶ℎ𝑘𝑟 will be
ero.
Status-quo path shares. The status-quo path shares are the inferred path choices of passengers on the incident day. During

he incident period, the demand on the WE, NS, and parallel bus lines experienced an increase. The difference from the average
emand on normal days can be seen as the number of passengers choosing the corresponding path. Hence, by identifying the demand
ncrease for all nearby bus stops, we can get the number of passengers using the parallel bus, NS+Green, and WE+Brown paths for
ach OD pair 𝑘 and time interval ℎ. However, the number of waiting passengers in the Blue Line cannot be directly inferred because
he CTA system does not record the tap-out information. Hence, we approximate the proportion of waiting passengers based on
urvey results (Rahimi et al., 2019). Rahimi et al. (2019) used a survival model to analyze the waiting time tolerance of CTA riders
uring a service disruption. The model results provide the proportion of waiting passengers given different system recovery times.
herefore, the status-quo path shares are inferred as follows:

• Step 1: Given the current time interval ℎ and the incident end time 𝑇𝑒, the remaining time until the end of the incident is
𝑇𝑒 − ℎ. Therefore, if passengers choose to wait, their waiting time will also be 𝑇𝑒 − ℎ. Based on the hazard model in Rahimi
et al. (2019), we can obtain the proportion of waiting passengers given the waiting time, denoted as 𝑝wait(𝑇𝑒 − ℎ).

• Step 2: For each OD pair 𝑘 and time interval ℎ, the number of passengers using the parallel bus, NS+Green, and WE+Brown
paths can be calculated based on demand increase compared to the normal demand. Let the demand increase for path 𝑟 of OD
pair 𝑘 at time ℎ be 𝐷𝐼ℎ𝑘𝑟, where 𝑟 ∈ 𝑅𝑘 ⧵ {𝑟wait}, 𝑟wait represents the path of waiting for the Blue Line.

• Step 3: The status quo path shares are calculated as follows:

𝑝ℎ𝑘𝑟wait = 𝑝wait(𝑇𝑒 − ℎ) ∀ ℎ ∈ , 𝑘 ∈ , (38)

𝑝ℎ𝑘𝑟 = (1 − 𝑝ℎ𝑘𝑟wait ) ⋅
𝐷𝐼ℎ𝑘𝑟

∑

𝑟∈𝑅𝑘⧵{𝑟wait} 𝐷𝐼ℎ𝑘𝑟
∀ 𝑟 ∈ 𝑅𝑘 ⧵ {𝑟wait}, ℎ ∈ , 𝑘 ∈  (39)

6. Results

In this section, we demonstrate the model’s performance in two steps. In the first step, results of the optimization model without
uncertainty (i.e., the nominal model with 𝜌1−𝜖 = 0) are compared with the three benchmark path shares. In the second step, we
compare the results from the robust model with the results from the nominal model in order to assess the value of considering
uncertainties in generating path recommendations.

6.1. Model convergence and computational time

Fig. 7 shows the convergence of the nominal (𝜌1−𝜖 = 0) and robust (with 𝜌1−𝜖 = 0.84) models. The simulation-based linearization
and MSA successfully decrease the system travel time. The model converges within 35 iterations. Note that the optimal cost for
the robust model is higher than the nominal model. This is expected since the robust model assumes the worst-case demand (by
definition with higher system travel time). The performance of the corresponding path recommendations will be evaluated based
on the actual demand (discussed in the next section).

The mode’s computational time mainly depends on the speed of the simulation and the number of iterations. Solving Eqs. (31)
and (32) is quite efficient because of the tractable SOCP formulations. Currently, running one simulation for the CTA system for 2 h
takes around 0.6 min. Hence, the total solving time for a RO model (assuming 35 iterations) is around 23 min.

The computational time of 23 min is too long for real-world rolling horizon implementation. However, since the bottleneck is the
simulation process, future studies can improve the model’s efficiency by enhancing the speed of the simulation model (e.g., code
with C++). If the simulation time is reduced to 5 s, the total solution time will be reduced to around 3 min, which enables the
real-world rolling horizon implementation with 15 min intervals (including times for updating inputs). Another way to simplify the
model is to reduce the look ahead horizons. Now we consider a 2-hour horizon until the end of the incident. With rolling horizon
implementation, since the incident information will be updated in real-time, we may only need to look ahead for 1 h and wait for
new information to come. Reducing the look-ahead time can significantly simplify the model and reduce the computational time.
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Fig. 7. Convergence of optimization models.

Table 2
Average travel time comparison.

Scenarios All passengers (# 27,003) Incident-line passengers (# 5,531)

Avg travel time (min) % changea Avg travel time (min) % changea

No incident 21.81 – 18.95 –

Uniform 31.02 +1.7% 54.64 +6.4%
Status quo 30.49 0% 51.34 0%
Capacity-based 28.36 −6.9% 43.23 −15.8%
Optimization (nominal) 27.71 −9.1% 40.75 −20.6%

aChanges compared to the status quo scenario.

6.2. Model evaluation

The optimization model only utilizes information about the nominal demand and the associated uncertainty set. The actual
demand is unknown when running the model (otherwise there are no uncertainties). After obtaining the path shares (either from
optimization or the benchmark models), the recommendation strategies are evaluated based on the actual incident day demand
using the simulation model. We assume passengers would follow the path recommendation. The simulation model can output the
travel times of every passenger in the system, and can be used to compare the performance of the path shares obtained from the
various approaches. Performance is measured in terms of average travel time and average waiting time.

6.3. Nominal vs. Benchmark models

Table 2 compares the results for different path shares, The result of the no incident scenario is also shown for comparison. The
average travel times are calculated over all passengers (a total of 27,007 passengers) and the passengers who originally planned
to use the Blue Line (i.e., passengers who are provided with recommendations, a total of 5,531 passengers, a subset of the 27,007
passengers). Results show that the optimization-based path shares outperform all benchmark models. For all passengers in the
system, the average travel time is reduced by 9.1% compared to the status quo. And for the incident line passengers, the reduction
is even higher (20.6%).

Recommendations based on the uniform path shares result in worse performance than the status quo scenario. This implies that
current passengers’ choices are not random and show some rationality. The capacity-based path shares can also reduce the system
travel time significantly (by 6.9%). However, as the capacity-based path recommendations do not capture the spatial and temporal
changes in available capacity due to passenger flow redistribution, they are worse than the optimization-based results. A more
comprehensive discussion on the performance comparison between the optimization model and the capacity-based model can be
found in Appendix E.

Compared to the no-incident scenario, we find that the influence of incidents is significant. Path recommendations can only
alleviate the impact of service disruption but are far from eliminating. Even with the optimization-based path recommendations,
we still have more than two times of travel time for incident-line passengers compared to the no-incident situation.

Fig. 8 shows the average travel time and waiting time for different paths for all incident line passengers. We observe that
the optimization-based path recommendations have more consistent travel time across the four types of paths, implying a better
utilization of the system’s capacity. However, for other recommendation strategies, passengers using parallel buses have significantly
longer travel times than those using other alternatives. Fig. 8 also shows that the average waiting time for the status quo scenario is
around 30 min, which means most passengers chose to use the parallel bus during the incident, causing severe congestion. However,
with the optimization-based path shares, the average waiting time for the parallel bus is less than 5 min (around a headway).
98



Transportation Research Part B 169 (2023) 82–107B. Mo et al.
Fig. 8. Comparison of average travel time and waiting time of different paths for incident line passengers.

Fig. 9. Distribution of the change in individual travel time (not including passengers without changes as they will distort the distribution with too much density
concentrated at zero).

The objective of this study is to minimize the system travel time. However, under the optimal path shares, some passengers’ travel
time may be increased compared to the status quo. Fig. 9 shows the distribution of changes in individual travel time (optimization-
based minus the status quo) for all passengers whose path choice under the recommendation scenario is different than their choice in
the status quo scenario. Most passengers experience lower travel times. However, some passengers become worse off after following
the path recommendations. This is a typical drawback of system optimal (first-best) assignment (Lawphongpanich and Yin, 2010).
Future studies may explore a Pareto-improving (second-best) path recommendation that ensures no individual becomes worse-off.
In reality, when implementing the recommendations, some paths that lead to extremely worse travel time compared to the status
quo can be dropped from the solution.

6.4. Robust models vs. Nominal model

6.4.1. Model comparison under actual demand
Fig. 10 compares the results, in terms of travel time, of the RO approach with different values of 𝜌1−𝜖 under the actual demand.

For all values of the robust model except for 𝜌1−𝜖 = 2.33, the RO approach shows better performance than the nominal model.
This implies that considering the demand uncertainty in determining the recommendation can further improve the effectiveness of
path recommendation strategies. The best value is 𝜌 = 0.84, where the travel time for the incident line passengers is reduced
99
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Fig. 10. Performance of RO. The percentage changes are compared to the nominal scenario.

Fig. 11. Worst-case demand patterns.

by 2.91% compared to the nominal model. Note that the percentage decreases are relatively small because some passengers’ travel
times are not changed. If we only look at incident-line passengers with travel time changes, the average travel times are 47.6 min
and 37.9 min for the nominal and RO (𝜌1−𝜖 = 0.84) scenarios, respectively, where the travel time reductions are 20.4%.

Note that using 𝜌1−𝜖 = 2.33 results in the largest uncertainty set compared to other values. This reflects a very conservative
scenario where the agency prefers to plan against a very high realization of demand. In this case, the worst-case demand patterns
may deviate from the actual demand too much, thus performing worse than the nominal model. Fig. 11 illustrates the worst-case
demand for different values of 𝜌1−𝜖 . The worst-case demands for the 𝜌1−𝜖 = 0.52, 0.84, 1.28 scenarios are closer to the actual demand,
while 𝜌1−𝜖 = 2.33 overestimates the demands, especially for the earliest periods (ℎ = 0, 1) (which are the most critical periods).
These results are consistent with the travel time performance in Fig. 10.

6.4.2. Model comparison under random demand
To further validate the model’s performance, we test the performance of the solution obtained from the RO approach on the

16 demand samples generated in Section 5.2. These demand samples represent different possible realizations of the incident day
demand. Fig. 12 shows the compassion of the random demand samples versus the actual and nominal demands. Notice that the
random demand samples include both high and low demand scenarios, which can better validate the performance of the RO approach
under different demand patterns.

Table 3 compares the results of average travel time for different RO models. The numbers in the table are the mean values of the
16 experiments. The performances are similar to the results under the actual demand. The RO approach shows better performance
than the nominal model for all values of 𝜌1−𝜖 the robust model except for 𝜌1−𝜖 = 2.33. The reasons may be that the RO approach
focuses more on critical OD pairs and time intervals where the path recommendations for them are considered more important for
system performance.
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Fig. 12. Random demand patterns for experiments.

Table 3
Average travel time comparison for RO models.

Models All passengers Incident-line passengers

Avg travel time (min) % changea Avg travel time (min) % changea

Nominal (𝜌1−𝜖 = 0) 27.79 – 41.08 –
𝜌1−𝜖 = 0.25 27.70 −0.32% 40.57 −1.23%
𝜌1−𝜖 = 0.52 27.65 −0.48% 40.24 −2.05%
𝜌1−𝜖 = 0.84 27.64 −0.54% 40.13 −2.31%
𝜌1−𝜖 = 1.28 27.68 −0.39% 40.41 −1.62%
𝜌1−𝜖 = 1.64 27.74 −0.17% 40.83 −0.60%
𝜌1−𝜖 = 2.33 27.86 +0.27% 41.47 +0.96%

aChanges compared to the nominal model.

Table 4
Average travel time comparison under the worst-case demands.

Uncertainty set Total demand All passengers avg travel time (min) Incident-line passengers avg travel time (min)

Nominal model Robust model (% changea) Nominal model Robust model (% change)

𝜌1−𝜖 = 0.25 27,084 27.99 27.67 (−1.14%) 41.77 40.43 (−3.21%)
𝜌1−𝜖 = 0.52 27,195 28.12 27.75 (−1.32%) 42.14 40.62 (−3.61%)
𝜌1−𝜖 = 0.84 27,344 28.26 27.86 (−1.41%) 42.47 40.89 (−3.72%)
𝜌1−𝜖 = 1.28 27,525 28.37 27.91 (−1.62%) 42.99 41.22 (−4.12%)
𝜌1−𝜖 = 1.64 27,522 28.61 28.05 (−1.96%) 43.81 41.74 (−4.72%)
𝜌1−𝜖 = 2.33 27,520 28.93 28.28 (−2.25%) 45.28 42.65 (−5.80%)

aChanges compared to the nominal model with the same worst-case demand.

6.4.3. Model comparison under worst-case demand
Theoretically, the RO model should show the best performance under the worst-case demand. Table 4 shows the comparison

between the nominal model and RO models under the worst-case demand (the worst-case demand patterns are shown in Fig. 11).
For each value of 𝜌1−𝜖 , we obtain the results for both the nominal model and the robust model by assuming the actual demand is
the worst-case demand. Note that with a higher value of 𝜌1−𝜖 , the worst-case demand patterns become worse and the average travel
time of passengers will increase regardless of which model we use.

As shown in Table 4, if the ‘‘actual demand’’ (i.e., the demand for model evaluation) is the worst-case demand, the robust models
consistently outperform the nominal models. And the improvement is higher than that of the previous experiments. Moreover, the
higher the value of 𝜌1−𝜖 (i.e., more extreme demand patterns), the higher the improvement of robust models compared to the nominal
models. This emphasizes the importance of considering demand uncertainties under extreme demand patterns.

7. Conclusion and discussion

In this paper, we propose a path recommendation model to mitigate congestion during public transit disruptions. Passengers with
different ODs and departure times are recommended alternative paths to use such that the total system travel time is minimized.
To tackle the non-analytical formulation of travel times due to left behind, we propose a simulation-based first-order approximation
to transform the original problem into a linear program and solve the new problem iteratively with MSA. Uncertainties in demand
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are modeled using RO techniques to protect the path recommendation strategies against inaccurate estimates. A real-world rail
disruption scenario in the CTA system is used as a case study. Results show that even without considering uncertainty, the nominal
model can reduce the system travel time by 9.1% (compared to the status quo), and outperforms the benchmark capacity-based
path recommendation. The average travel time of passengers in the incident line is reduced more (−20.6% compared to the status
uo). After incorporating the demand uncertainty, the robust model further reduces the system travel time. The best robust model
ith 𝜌1−𝜖 = 0.84 decreases the average travel time of incident-line passengers by 2.91% compared to the nominal model.

The performance improvement by incorporating demand uncertainty is not very significant. The reason may be that demand
ariations at the incident situation have a limited impact on the optimal path shares. Notice that the demand during an incident
s already very high for the system (due to the reduced supply level). Hence, the path recommendation patterns under nominal
nd worst-case demand may be similar. However, the methodology presented in this study provides a general way to deal with PT
emand uncertainty. It can be used for other operations control, optimization, planning, or recommendation applications.

Though we discussed potential model extensions with rolling horizon and incident duration uncertainty, we did not implement
hese extensions in the case study as the focus has been on the methodology for solving the problem. Incorporating real-time
nformation as an adaptive RO would generally increase model performance (Bertsimas et al., 2011). This presents an interesting
uture research direction. Other future research directions include the following. (1) Current demand uncertainty sets need to be
uantified with a budget factor 𝜌1−𝜀. The choice of budget factor usually relies on numerical testing (Bertsimas et al., 2012; Guo et al.,
021). Future studies may also develop data-driven uncertainty quantification methods to automate the hyperparameter tuning task.
2) As shown in Fig. 9, the system optimal path recommendation may result in worse-off travel time for some passengers, causing
quity and fairness issues. Future studies may consider incorporating Pareto-improving constraints to ensure that all passengers
re better-off if following our recommendation. (3) In this study, we assume that passengers follow the recommendation. Non-
ompliance, however, if present, may lead to the actual path flows deviating from the optimal ones. Future research may focus on
pproaches for path recommendations that capture behavior uncertainty. (4) Finally, this study presents an OD-based (aggregated)
ath recommendation regime. Passengers with the same OD and departure time are treated homogeneously. In reality, different
assengers may have different preferences on path choices. And these preferences can affect their compliance with recommendations.
uture studies can develop an individualized path recommendation system considering heterogeneous passenger preferences.
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Appendix A. Capturing supply changes by adjusting timetable

Since all the operations can be described by timetable, it is reasonable to capture the supply changes in disruptions by adjusting
the timetable. In this appendix, we show that our simulation model is able to capture the ‘‘partially blocked tracks’’ at a platform
with complex configurations (e.g., different train capacities or different lines). That is, even if only one specific track failed in a
platform, this type of disruption can be captured by the change in vehicles’ timetables.

For example, consider a platform with 2 different lines A and B (Fig. A.13). Suppose that only the track associated with Line A
is blocked. And operators decide to let Lines A and B share the same remaining track. This operation change can be captured
by adjusting the train’s timetable for Lines A and B (i.e., trains may have higher headway, and they cannot use the platform
simultaneously in the new timetable). In this example, the second vehicle of Line A is delayed to 7:30 and the second vehicle
of Line B is delayed to 7:40.

Appendix B. Simulation-based first-order approximation

B.1. Calculation of 𝑇 Qℎ𝑘𝑟(�̃� )

Let 𝑏
ℎ𝑘𝑟 be the set of vehicles that the ℎ𝑘𝑟 passengers board at station 𝑏. Adding an additional passenger to ℎ𝑘𝑟 means one

more passenger boards one of the vehicles in 𝑏
ℎ𝑘𝑟. Let 1{Full𝑏𝑣}

be an indicator of whether vehicle 𝑣 is full or not after its departure
from station 𝑏. Then the total increase in system travel time for passengers queuing behind ℎ𝑘𝑟 is:

𝑇Q
ℎ𝑘𝑟(�̃� ) =

∑

𝑏∈ℎ𝑘𝑟

∑

𝑣∈𝑏
ℎ𝑘𝑟

1{Full𝑏𝑣}
⋅𝑊 𝑏

𝑣

|𝑏
ℎ𝑘𝑟|

(B.1)

where ℎ𝑘𝑟 is the set of all boarding stations for ℎ𝑘𝑟 passengers (in the example of Fig. 2, ℎ𝑘𝑟 = {𝑎1, 𝑎5}). 𝑊 𝑏
𝑣 is the headway of

vehicle 𝑣 at station 𝑏. The sum over all vehicles is because we do not specify the exact vehicle that the additional passenger will
board, and thus take the average over all vehicles. In the example of Fig. 2, since there are two boarding stations for ℎ𝑘𝑟 (𝑎1, 𝑎5),
𝑇Q (�̃� ) is approximately two headways if the vehicles are full.
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Fig. A.13. Example of representing supply changes as timetable changes in a multi-platform scenario.

B.2. Calculation of 𝑇 Oℎ𝑘𝑟(�̃� )

Let 𝑣
ℎ𝑘𝑟 be the set of all on-board stations for ℎ𝑘𝑟 and vehicle 𝑣 ∈ 𝑏

ℎ𝑘𝑟. For example, for vehicles in Line 1 in Fig. 2, 𝑣
ℎ𝑘𝑟 will

be 𝑎2, 𝑎3, and 𝑎4. Then the travel time increase for passengers waiting at on-board stations is:

𝑇O
ℎ𝑘𝑟(�̃� ) =

∑

𝑏∈ℎ𝑘𝑟

∑

𝑣∈𝑏
ℎ𝑘𝑟

1
|𝑏

ℎ𝑘𝑟|

∑

𝑎∈𝑣
ℎ𝑘𝑟

1{Full𝑎𝑣} ⋅𝑊
𝑎
𝑣 (B.2)

Appendix C. Path-passenger matching

After obtaining the optimal path shares 𝑝∗ℎ𝑘𝑟, the operator may need to know which path to provide to each such that the final path
shares are close to 𝑝∗ℎ𝑘𝑟, especially when passengers have different preferences and may not follow the unpreferred recommendations.
In this section, we define a path-passenger matching problem as a solution for this challenge.

Consider a passenger 𝑗 with a path set 𝑖. His/her inherent preference (utility) of using path 𝑟 ∈ 𝑖 is denoted as 𝑉 𝑟
𝑖 . If path 𝑟′

was recommended, the impact of the recommendation on the utility of path 𝑟 is denoted as 𝐼𝑟𝑗,𝑟′ . Hence, his/her overall utility of
using path 𝑟 can be represented as

𝑈 𝑟
𝑗 = 𝑉 𝑟

𝑗 +
∑

𝑟′∈𝑗

𝑥𝑖,𝑟′ ⋅ 𝐼
𝑟
𝑗,𝑟′ + 𝜉𝑟𝑗 ∀𝑟 ∈ 𝑖, 𝑗 ∈  (C.1)

where 𝜉𝑟𝑗 is the random error.  is the set of all passengers that need recommendations. 𝑥𝑗,𝑟′ = 1 if passenger 𝑗 is recommended
path 𝑟′, otherwise 𝑥𝑗,𝑟′ = 0. Let 𝜋𝑟

𝑖,𝑟′ be the conditional probability that passenger 𝑗 chooses path 𝑟 given that the recommended path
is 𝑟′. Assuming a utility-maximizing behavior, we have

𝜋𝑟
𝑗,𝑟′ = P(𝑉 𝑟

𝑗 + 𝐼𝑟𝑗,𝑟′ + 𝜉𝑟𝑗 ≥ 𝑉 𝑟′′
𝑗 + 𝐼𝑟

′′

𝑗,𝑟′ + 𝜉𝑟
′′
𝑗 , ∀𝑟′′ ∈ 𝑗 ) (C.2)

Different assumptions for the distribution of 𝜉𝑟𝑗 can lead to different expressions. For example, if 𝜉𝑟𝑝 are i.i.d. Gumbel distributed,
the choice probability reduces to multinomial logit model (Train, 2009) and we have

𝜋𝑟
𝑗,𝑟′ =

exp(𝑉 𝑟
𝑗 + 𝐼𝑟𝑗,𝑟′ )

∑

𝑟′′∈𝑗
exp(𝑉 𝑟′′

𝑗 + 𝐼𝑟′′𝑗,𝑟′ )
(C.3)

The value of 𝑉 𝑟
𝑗 and 𝐼𝑟𝑗,𝑟′ can be calibrated using data from an individual-level survey or smart card, which deserves separate

research. For those without such information, this information can be approximated by the population average. When developing
the path-passenger matching formulation, we assume 𝜋𝑟

𝑗,𝑟′ is known. Fig. C.14 shows an example for the conditional probability
matrix. The specific values assume that paths with recommendations are more likely to be chosen. The conditional probability 𝜋𝑟

𝑗,𝑟′
captures the individual’s inherent preference for different paths as well as the response to the recommendation system.

The expected path flow for (ℎ, 𝑘, 𝑟) is

𝜇ℎ𝑘𝑟(𝒙) =
∑

𝑗∈ℎ𝑘

∑

𝑟′∈𝑘

𝑥𝑗,𝑟′ ⋅ 𝜋
𝑟
𝑗,𝑟′ + 𝑞ℎ𝑘𝑟 ∀(ℎ, 𝑘, 𝑟) ∈  (C.4)

where 𝒙 =∶ (𝑥𝑗,𝑟)𝑗∈ ,𝑟∈𝑗
. 𝑞ℎ𝑘𝑟 (constant) is the flow of passengers in (ℎ, 𝑘, 𝑟) that do not need recommendations. ℎ𝑘 ⊆  is the set

of passengers with OD pair 𝑘 and departure time ℎ who need recommendations.
Suppose the value of 𝜋𝑟

𝑝,𝑟′ is known, we can formulate the path-passenger matching problem as an integer linear program:

min
𝒙

∑

(ℎ,𝑘,𝑟)∈
|𝜇ℎ𝑘𝑟(𝒙) − 𝑑ℎ𝑘 ⋅ 𝑝

∗
ℎ𝑘𝑟| (C.5a)

s.t. Constraint (C.4) (C.5b)
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Fig. C.14. Example of conditional path choice probability.

𝑑ℎ𝑘 =
∑

𝑟∈𝑘

𝜇ℎ𝑘𝑟(𝒙) ∀ℎ ∈ , 𝑘 ∈  (C.5c)

∑

𝑟∈𝑅𝑗

𝑥𝑗,𝑟 = 1 ∀𝑗 ∈  (C.5d)

𝑥𝑗,𝑟 ∈ {0, 1} ∀𝑗 ∈  , 𝑟 ∈ 𝑗 (C.5e)

The objective function aims to minimize the difference between the expected path flow and the optimal path flow. Solving
Eq. (C.5) yields which path should be recommended to each passenger. It is worth noting that one could also solve the path-
passenger matching problem and the path recommendation problem simultaneously, which is equivalent to an individual-based
path recommendation problem (Mo et al., 2023).

Appendix D. Validation of the simulation model

Usually, a transit simulator is validated by ‘‘OD exit flow’’ (i.e., the number of tap-out passengers for a specific OD pair and time
interval). This is because we only input the ‘‘OD entry flow’’ (i.e., the number of tap-in passengers for a specific OD pair and time
interval). Since the simulator will output the tap-out time for each passenger, comparing the model-output OD exit flow with the
ground truth (obtained by AFC data with tap-out information) provides validation for the model.

However, in this study, the CTA system does not have tap-out information because it is an open system, implying that the
ground truth OD exit flow is not available. But CTA adopted a destination system called ‘‘ODX’’. The ODX algorithm is developed
by Sánchez-Martínez (2017). It is shorthand for ‘‘origin, destination, and transfer inference algorithm’’, an extension of the O-D
inference algorithm proposed by Zhao et al. (2007). It takes automatically collected data, including AVL and automatic fare collection
(AFC), as inputs and infers both destinations and transfers in a tap-on-only transit system, including locations and times. Given a
series of tap-in records for a given smart card ID, the tap-out information is inferred as follows: (1) if the current tap-in time is close
to the previous tap-in time, the current vehicle ‘‘stage’’ is part of a transfer journey from the previous stage and the alighting location
of the previous stage is inferred as the closest stop on that route to the boarding location of the current (second) stage; (2) if there
is a large time gap between the current tap-on and the previous tap-int, the alighting location of the previous journey is inferred
as the closest stop on the previous route to the boarding location of the current journey assuming passengers’ travel patterns are
symmetrical and the distance between the inferred alighting location and the subsequent boarding location meets maximum distance
criteria. More details can be found in Zhao et al. (2007) and Sánchez-Martínez (2017).

We can treat OD exit flow output by ODX as the ground truth. The comparison is based on the data on a normal weekday without
incident. We also aggregated the flows by destinations for better visualization. Fig. D.15 shows the comparison between OD exit
flow between 9:00–10:00 AM at the top 10 stations in the analysis area (see Fig. 5). The flows between simulation and ground truth
are consistent, implying that the simulation can well capture the passenger and vehicle dynamics. A more comprehensive validation
of the simulation model can be found in Mo et al. (2020), where the case study is based on the Hong Kong Mass Transit Railway
system.

Appendix E. Discussions on the model performance compared to the capacity-based path recommendations

The improvement of the proposed method compared to the capacity-based method mainly comes from the ‘‘network-level’’
optimization for solving the system optimal flows. The proposed model considers the dynamics between upstream and downstream
decisions, which are ignored in the capacity-based path recommendations. For example, in the capacity-based path recommen-
dation, when calculating the available capacity for downstream passengers, the possibly occupied capacity by the recommended
upstream passengers is not captured. This is because capacity-based path recommendation is a simple heuristic and does not
consider the interaction between the recommendations at differentiation stations from the spatial and temporal aspects. However,
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Fig. D.15. Comparison between simulation of ground truth OD exit flows.

Fig. E.16. Path shares comparison for different recommendation strategies.

the optimization-based methods (both nominal and RO models) are able to capture these interactions through network-level
optimization.

In our case study, the improvement compared to the capacity-based method is not significant (around 5% for incident line
passengers, see Table 2). The reason is that there are not many upstream and downstream interactions in the Blue Line case study
(see Fig. 5). Only the parallel bus line has this problem (i.e., the recommendation from upstream passengers may occupy the capacity
of downstream passengers). The NS and WE buses have independent lines to connect to the Green and Brown Lines, respectively.
And Green and Brown lines have enough capacity to serve passengers from the Blue Line. Therefore, we did not see significant
improvement.

This can be further evidenced by the path shares comparison (Fig. E.16). The path shares shown in the figure are the
weighted average over all OD pairs and time intervals with weights equal to the corresponding demand. We observe that the
optimization model de-prioritizes the use of parallel buses. However, the capacity-based model, since cannot capture the upstream
and downstream recommendation interactions, over-recommends passengers to the parallel buses. It is worth noting that, when there
are no upstream and downstream interactions, the capacity-based path recommendation can be very close to the ‘‘system-optimal’’
path shares (if the travel times of alternative paths are similar).
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